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ABSTRACT 

We prove new ergodic t heo rems  in the  context  of  infinite ergodic theory, 

and  give some appl icat ions to R i e m a n n i a n  and  K/ihler manifolds  with- 

out  conjugate  points.  One  of the  consequences  of these  ideas is t ha t  a 

comple te  manifold wi thout  conjugate  points  has  nonposi t ive  integral  of 

the  in f imum of Ricci curvatures ,  whenever  this  integral  makes  sense. We 

also show tha t  a comple te  K/ihler manifold wi th  nonnega t ive  holomorphic  

curva tu re  is flat if it has  no conjugate  points.  

O. I n t r o d u c t i o n  

Infinite ergodic theory is the study of measure-preserving transformations of in- 

finite measure spaces. A class of very natural examples is that of null-recurrent 

Markov chains (resp. their shifts) such as the symmetric coin-tossing random 

walk on the integers. There is a great variety of ergodic behavior infinite measure- 

preserving transformations can exhibit, and they have undergone some intense 

research within the last twenty years, much of which is associated with the name 

of Aaronson ([Aa]). In his book Aaronson studied the standard a-finite measure 

spaces and non-singular measure preserving transformations. 

This paper will provide another class of natural examples in the category of 

infinite ergodic theory. We prove new maximal ergodic theorems, which include 
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some known geometric results and have some new geometric consequences. We 

will restrict the discussion on manifolds even though some of the results can be 

generalized to more general cases. 

Let N be a manifold equipped with the a-algebra/3 of Borel sets, a flow T¢, 

t E R, and a Tt-invariant measure p. Let g: N --+ R be a measurable function. We 

say that  a measurable flmction g has wel l -def ined  i n t eg ra l  if either the positive 

or the negative part  of g is integrable on M. We start  with the statement of the 

classical Maximal Ergodic Theorem (see [Pt], here we use "inf" instead of the 

usual "sup" for later convenience in applications). 

MAXIMAL ERGODIC THEOREM: Let g be a measurable function, with well- 

defined integral on N,  and Z C N be a Tt-invariant Bore1 subset. Set 

{ ( } E[g]= w e e  I inf g(r twldt  < O . 
s>o 

Then fEM gdp < O. 

Our main ergodic result is the following new maximal ergodic theorem. 

THEOREM 0.1: Let f be a measurable function with well-defined integral on 

N and Z C N be a Tt-invariant Borel set. Consider the following Tt-invariant 

subset, 

{ L + r } E ( f )  = w E Z I l iminf  f (T tw)dt  < O, l iminf f (T tw)dt  < +oc , 

where Is denotes the interval [0, s] ifO < s, and [s, 0] if  s < O. Then rE(l) f d# <_ O. 

Here we allow the time to go to infinity in both directions and the total  measure 

spaces to be infinite. Thus many results in ergodic theory can be reformulated 

under this point of view. As shown by our applications to Riemannian geometry, 

it is particularly useful in spaces of infinite measure. 

When the measure of N is finite, it is not. difficult to obtain Theorem 0.1 fi'om 

the Maximal Ergodic Theorem. So tile importance of Theorem 0.1 relies on the 

ergodic theory on infinite measure spaces. We will also give in the first, section 

another version of Theorem 0.1 (see Theorem 1.2) with the conservative and 

dissipative parts of N separated. 

As a corollary of Theorem 0.1 we can obtain a pointwise ergodic Theorem. 

COROLLARY 0.1: Let f be a measurable function with well-defined integral on 

some Tt-invariant Borel subset 13. Assume that for ahnost all w E 13, we have 

l iminf f f (T tw)dt  < +oc,  l imsup f f (T tw)dt  > -oc .  
.s-++oo i t+ s-+.:l:~ +11+ 
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Then 

(a) the limit 

lim -1 f ~ '  f (T tw)dt  := f (w)  
u ~ - c ¢  y U 
v--++oo 

exists almost everywhere in E. 

(b) / (T tw)  = f (w) ,  ahnost everywhere in E; 

(c) f z  I/Id~ <_ f z  Ifld#, hence ~E • L~(E) provided that f ie  • LI (E);  

(d) if  further E has finite measure then fE f d p  = fE fdp,  and 

~ v  1 f(rt(.))dt ~ f(.) 
V ~1, u 

in L 1 (E) as u -+ - o c  and v --4 +oc.  

Our second ergodie result is a rigidiV theorem corresponding to Theorem 0.1. 

THEOREM 0.2: Let N and f be as in Theorem 0.1 and let %, denote the orbit 

satisfying 7w(O) = w. Assume that there exists an open set U such that the Tt- 

invariant set E ( f )  satisfies U C E ( f )  C (7, where C is the closure of U. Suppose 

that rE(f) fdp~ = 0 and f is continuous. Then f =_ 0 on E ( f )  provided that one 

of the following conditions holds: 

(a) The interior of E ( f )  has few r e c u r r e n t  o rb i t s ,  name/y, for each point 

w • E ( f )  and each neighbourhood W of w, there exists a Bore1 set E c W 

with positive measure, such that for each w • E,  at least one of the two 

pieces %,It_>0, 7~]t<_o does not intensect E for [tJ large enough; and for 

ahnost a11 w • E ( f ) ,  the condition 

lim inf f (T tw)dt  = 0 

implies that f (T tw)  = 0 along 7.~. 

(b) There exists a measurable function x on E ( f ) ,  such that, for almost all w, 

there exists a = aT~ ~ > 0 such that the function x o 7 satisfies the following 

inequality of Ricatti type: 

(xo^1) ' + a ( x o T )  2 + r o y  < O. 

There are many examples of manifolds with the property in condition (a), for 

example the unit tangent bundles S M  of complete and noncompact manifold M 

with sectional curvature K _> 0. or a complete simply connected manifold without 

conjugate points. However, the unit tangent bundle S S  n of the standard sphere 
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and the unit tangent bundle ST '~ of a flat torus are typical examples which 

do not satisfy this property. The conditions in Theorem 0.2 are natural in our 

geometric applications. We show in Examples 3.1 and 3.2 in the third section 

that  the conditions for rigidity in Theorem 0.2 cannot be dropped. 

Our ergodic theorems extend several geometric results. Among them are: the 

famous theorem of Hopf-Green ([Gn]) which says that the integral of scalar cur- 

vature of a closed manifold without conjugate points is nonpositive and is zero if 

and only if the metric is flat; and its generalization to noncompact Riemannian 

manifolds by Guimarges ([Gu]). Besides, we also have new geometric applica- 

tions involving Ricci curvature in Rienlannian cases and holomorphic curvature 

in K/ihler cases (see §2). 

The rest of this paper is organized as follows. In the first section we prove the 

ergodic results. In the second section we apply them to Riemannian geometry, 

particularly to the integral of curvature, and to integral geometry. In the third 

section we present the examples mentioned in the discussions. 
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1. Pro o f  of  the  ergodic results.  

Let f :  N --+ R be a measurable function, which is e~ssumed to be Lebesgue 

integrable along compact parts of some orbit starting at w E N. We define: 

i(w, I )  := l iminf f/" f(Ttw)dt, 

i+(w,I) := liminf [" Y(Ttw)at, 
s~+oo J0 

i_(w, f):= l iminf [°y(T,w)dt,  
8 - ' +  - -  (X) , ] 8  

and then 

I(u,, f) := limsup f*' f(Ttw)dt, 
u ~ -  ~., J ' n  
v --y q-<x, 

I+(w, y) := limsup fs y(Ttw)dt, 
s--++~ dO 

I_(w, I )  := lira sup fo I(Ttw)dt, 
8 - - ) ' - - 0 0  Js  

E(:) = {0, ~ Zl i(~,, :) <_ O, i+(w, : )  < +c~, i_(~,, /)  < +oo}. 

Let us begin our proof by recalling some facts of ergodic theory. We refer to [Pt] 

as a basic reference. Given a positive integrable function g on some Tt-invariant 
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Borel set Z, define the following Tt-invariant sets: 

{ /7 } D + = w E ZI the Lebesgue integral g(Gw)dt  < +co , C + = Z \ D  +. 

The Hopf  decomposit ion Z = D + U C  + does not depend on the integrable positive 

function g up to a set of measure 0. D + and C + are called, respectively, the 

dissipative and the conservative parts  of Z. If  we consider the reverse flow T-t  
we obtain  another  decomposit ion Z = D -  U C - ,  with similar definitions as above. 

The set D = D + N D -  satisfies the Lebesgue integral f + ~  h(Ttw)dt < +oc ,  for 

every integrable function h, for ahnost  all w E D. Set T(w) = Tlw. Define an 

equivalence relation on Z by saying v ~-, 'w if there exists j E Z so tha t  TJ (v) = w. 

Let f~ be the set of equivalence classes and rr: Z --+ ~ be the natural  projection. 

We say tha t  a Borel set E C Z is a wandering set if T j (E) N E = {~, for every 

j > 1. Now we consider the a a l g e b r a  on f2 induced by rr, in which a set A C 

is measurable if and only if r r - l (A)  is a Borel set. Let fi be the measure on f~ 

given by 

fi(E) = sup{p(E) l  E C rc-l(/~), E is a wandering set}. 

We state  here a result of Ouimarges which will be used in the proof  of Theorem 

0.1. 

PROPOSITION 1.1 

then 

(Proposi t ion 2.3 in [Gu]): / f g  is an integrable fimction on Z, 

Now we are ready to prove Theorem 0.1. 

Proof of Theorem 0.1: Let, f+  (respectively f_ )  be the positive par t  (respec- 

tively, the negative part)  of f .  By hypothesis  either rE(y)f+diz  < +oo  or 

rE(y) f _ d p  < +o0.  So we can assume tha t  rE(f) f _ d p  < +c¢ ,  otherwise there is 

nothing to prove. Take a W integrable function 0 _< g _< f+.  We will prove 

that  fE(y)(g -- f_ )d#  < O, hence fE(y)gdlt <_ rE(y) f_dp.  Since g is arbi- 

trary, the monotone  convergence theorem implies tha t  f+  is also integrable and 

rE(y) f+dp < f E t : )  f_d#,  hence rE( f ) fd#  < 0. To prove tha t  fE(:)(g - f_ )dp  
< 0, we consider the disjoint union E ( f )  = D U C + U (C- \C+) .  

Take w E D. Since i(w, f )  < 0, there exist sequences uk --+ - o c ,  vk -+ +oo  

such tha t  limk-++oo f,:~ f(Tcw)dt < O. Since f~(g-f_)(Ttw)dt < + c o  we have 

(g - :_)(Ttw)dt  = lint (g - f_)(Ttw)dt  < lim f (T tw)dt  < O, 
o o  t t  k ,1 IL k 
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for Mmost M1 w E D. Then from Proposition 1.1 we obtain 

fo (g - f _ ) d #  = (g - f_ ) (T tw)d tdp  <_ O. 
(D) 

Now we take w E C + and fix some positive integrable function f0 and 5 > 0. 

Since i + ( w , f )  < +co there exist L E R and a sequence sk --+ +co such that 

fo k ] (Ttw)dt  < L. So we have 

foSk(g - f_  - h fo)(Ttw)dt  < foSk f (T tw)d t  - 6 fo~k fo(Ttw)dt  --~ - ~ ,  

for ahnost all w E C +, by definition of C +. By the Maximal Ergodic Theorem 

we have fc+(g - ] -  - 5fo)dp <_ O, and we get fc+(g - f _ )d#  <_ O, by making 

6 - + 0 .  

In the case that w E C_ the proof is similar, applying the Maximal Ergodic 

Theorem to the reverse flow T-t ,  and using that i_ (w, f)  < +co. This concludes 

the proof of Theorem 0.1. II 

Applying Theorem 0.1 to - f  we obtain: 

THEOREM 1.1: Let f be a measurable fimction with well-defined integral on 

N and Z C N be a Bore1 set, which is Tt-invariant. Consider the following 

Tt-invariant subset, 

E ( : )  = {w E Z I I ( w , f )  > O, I+(w , : )  > - ~ ,  I _ ( w , : )  > -cx>}. 

Then rE(f) f d p  > O. 

The equality in Theorem 1.1 implies a rigidity theorem completely similar to 

Theorem 0.2. We note also that, in the proof of Theorem 0.1, when w E D 

we used only i ( w , f )  < 0, and when w E (C + td C - )  we used only i+ (w , f )  < 
+cx~, i _ ( w , f )  < +~x~. Thus we can separate Theorem 0.1 considering the dis- 

sipative part D and the conservative parts C + and C - .  This modification has 

some applications (see for example Corollary 2.2) and we state it. as the following 

theorem. 

THEOREM 1.2: Let N,  Z and f be as in Theorem 0.1. Consider the Hopf  

decomposition Z = D U C + U C - .  Set: D ( f )  = {w E D I i(w, f )  < 0}, C+( f )  = 

(w E C+I i+ (w , f )  < +oc}, C - ( f )  = {w E C -  I i _ ( w , f )  < +oc}. Then the 

integral o f f  is nonpositive on each one of the sets D( f ) ,  C+(f ) ,  C - ( f ) .  

Note that C + fq C -  could be nonempty. So, if it is convenient, we ('an use 

C - \ C  + instead of C -  to have a disjoint union (in fact we did it in the proof of 

Theorem 0.1). 
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Now we begin to prove our Theorem 0.2 by s ta t ing  two l emmas  abou t  Ricat t i  

inequalities which follow from [Gu], Proposi t ion  3.3. For a posit ive constant  a 

and a continuous flmction x, consider the following inequali ty of Ricat t i  type: 

fl (1.1) x(t2) - x(t l)  + a x2(s)ds+ f (s )ds  < O, tl < t2. 
JQ 

LEMMA 1.1: If  x is a solution of (1.1) for all real nmnbers t t  < t2, then we have 

:= l i m i n f t - , + ~  f t_t f(s)ds < O. Furthermore, we have ~ = 0 if  and only i f  

f ( t )  - 0 and a,(t) =_ 0. 

LEMMA 1.2: Assmne that x satisfies (1.1) for all t2 > tl. Then, for all c > O, we 

have ~l = l i m i n f t ~ + ~  f:l  f ( s )ds  < +oo. 

Now we are in posit ion to prove Theorem 0.2. 

Proof of Theorem 0.2: First  we consider the hypothesis  (a) in Theo rem 0.2. 

Suppose by contradict ion tha t  rE(I)fdp. = 0 and tha t  there exists w E E ( f )  

with f (w)  ¢ 0. Since f is continuous, and N has few recurrent  orbits,  we can 

assume wi thout  loss of generali ty tha t  w is in the interior of E( f ) ,  and tha t  7w 

is not constant .  So there exists a ne ighbourhood W of w of the form [0, ¢] x B,  

where B is an open disk and W is given by the Theorem of the Tubular  Flow. 

We can assume also tha t  f ¢ 0 on W, and tha t  e is the t ime tha t  each connected 

componen t  of an orbit  remains  on W. Let /)  be the Borel subset  of points  

x c W, such tha t  at  least one of the pieces "/x[t>o, %It<0 does not intersect W 

for sufficiently large It[. By our hypotheses,  we have i(x, f )  < 0 for ahnost  all 

x ¢ W, and p,(/)) > 0. Let E be the set of points  x e /)  satisfying %,(t) ~ W 

for sufficiently large t > 0. We have It(E) > 0 or p , ( / ) \E )  > 0. Wi thou t  loss 

of generali ty we assume tha t  It(E) > 0 (the other  possibil i ty can be t rea ted  

similarly).  

Given z E E ,  let ~/~ be the last connected componen t  of ~.~ which enters in W 

and let %~, %3 . . . .  be the preceding components .  If  x is in %J we set j (a ' )  = j .  So 

we define g: E ( f )  + R given by 

max{i (x ,  I ) , - 1 }  
g(x) = 2J(x)e if x E E, g(x) = 0 if x e E ( f ) \ E .  

I t  is not difficult to see tha t  g is a measurable  function. In fact, the flmetion 

~: E x R 2 --+ R given by ~(x, u, v) = j::' f(Tt:r)dt is measurable ,  hence i(x, f )  is 

measurable .  By the continuity of the flow Tt, for y in a small  ne ighbourhood of x 

we have j (y)  > j (x) ,  so the function j is semi-contimmus,  hence it is measurable .  
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Note also that  
f g(Ttx)dt = max{i(x, f ) ,  -1}  

J 2J ' 

hence 0 > f+~ g(Tta')dt >_ max{i(x, f ) , - 1 } .  

So we define f = f -g .  By considering the cases i(x, f )  _< - 1  and 0 > i(x, f) > 
- 1  we still have i(x,f) < O, i+(x,f) < +cx~ and i_(x,f) < + ~ ,  for almost all 

x E E(f). Then we have rE(f) fdp, < 0 by Theorem 0.1. On the other hand, we 

have 

This contradiction proves Theorem 0.2 under the hypothesis (a). 

Now we assume hypothesis (b) of Theorem 0.2. By integration we arrive at 

inequality (1.1). Fix ~ > 0. First we rewrite the inequality (1.1) in the following 

fornl: 

r fl (1.2) a , ( t 2 ) - x ( t l ) + a e  xs(t)dt+ (f(t)+(1-e)ax2(t))dt<O, tl < t2 .  
dtl 

For ahnost all w E E(f) we can apply Lemma 1.1 to (1.2) obtaining 

i(w, f + a(1 - e)x 2) _< lira inf f t  {f(T,w) + a(1 - e)(x(T,w))SIds < 0. 
t ~ + ~  a - t  

Tlms we obtain i(w, f + a(1 - e)x 2) _< 0. By Lemnm 1.2 we have 

i + ( w , f + a ( 1 - e ) . ~ r 2 )  < + c o  and i _ ( w , f + a ( 1 - e ) x  2) < + c o .  

To apply Theorem 0.1 to f + a ( 1  - e ) x  2 we need only check that f + a ( 1  - e ) x  2 has 

well-defined integral on E(f). Since f has well-defined integral and rE(f) fdp = 0, 
we conclude that rE(f)f+dp = rE(f)f_dp < +ec.  Since the negative part of 

9 := f + a(1 - e)x 2 is not bigger than f_ ,  then f g_ < +ec  and we can apply 

Theorem 0.1. We obtain 

( f  + a ( 1 -  e)x2)dlt= fE fcllt+ fE (l-e)ax2dlt<O" 
(f) (f) (f) 

Since rE(f) fd# = 0, we conclude that x - 0 ahnost everywhere. We assert that 

this implies that  f < 0. If this is not true, the continuity of f implies that there 

exists an open set W contained in the interior of E(f) such that f > 0 on W. 

By (1.1) we conclude that x is strictly decreasing along the orbit "y,, n W, for 

almost all w E W. In particular these orbits are not constant, hence W contains 

a neighbourhood V given by the Theorem of the Tubular Flow. Fix a transversal 
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section E in V. For ahnost any w E ~ the orbit %, C/V has x = 0 at most at one 

of its points. This contradicts the fact that  x = 0 almost everywhere on V. So 

we have f <__ O. Since rE(f) fdp = O, the continuity of f leads to f - 0 on E(f). 
The proof of Theorem 0.2 is completed. | 

Proof of Corollary 0.1: The proof is completely similar to the proof of the 

Birkhoff Pointwise Ergodic Theorem in [Pt], using our Theorem 0.1 instead of 

the Maximal Ergodic Theorem. We observe that  Corollary 2.2 in [Pt], which 

is needed in the proof, is shown there by assuming finite measure, but it could 

be easily obtained in the infinite case, just considering a convergence by sets of 

finite measure. The proof of the Birkhoff Theorem is done there for the case of 

a measure-preserving transformation T, instead of a flow Tt preserving measure, 

but the adaptat ion to our case is trivial and standard. We will only present the 

proof of i tem (c), since it is short, and can give some idea of the adaptations 

needed to prove our corollary. By item (a) we have 

f (v )  = lira --1 f ~  f(Ttv)dt, 
n--+ +oo 211 n 

for almost all v E E. Since 

~ f_ f(Ttv)dt 1 [ n 1 " < ~ ]f(Tcv)ldt ' 
12 d - -  11 

it holds that  Ifl -< I l l -  almost everywhere. We can assmne that  f E LI (E) ,  

otherwise the inequality in (c) is trivial. Now we use Fatou's Lemma and the 

fact that  it is invariant under the flow Tt. We have 

£[ f ld l t< fz l f l -dl ,<l iminf  f e { 1  f~" } £ _ _ ,--,+~ ~ , If(Try)[dr d,.= ]fldp < +~. | 

2. S o m e  appl icat ions  of  the  ergodic  t h e o r e m s  

Let 211 n be a complete n-dimensional Riemannian manifold with the nornlal- 
ized scalar curvature SM, In 1948, E. Hopf ([Ho]) proved that, the integral 

far SMdV < 0 when M 2 is compact and has no conjugate points, and the inte- 
gral vanishes if and only if the metric is fiat. An important generalization of E. 

Hopf's Theorem is due to Green ([Gn]) who proved that the dimension restric- 
tion is superfluous. Combining with the Gauss-Bonnet Theorem, this beautiful 
result implies that any metric on torus T 2 without conjugate points is fiat. The 
generalization of the result, to T n known as E. Hopf's conjecture was proved by 
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Burago and Ivanov ([BI D. After an improvement of Innami ([I]), this celebrated 

theorem of Hopf and Green has been generalized by Guimar£es in [Gu] to com- 

plete manifolds without conjugate points, under the additional condition that  

the Ricci curvature has well-defined integral as a function on the refit tangent 

bundle SM, equipped with the Liouville measure it. 

All the above-mentioned results could be considered as special cases of our 

ergodic theorems. Besides, we have the following 

THEOREM 2.1: Let R(p) be the infimum of Ricci curvatures at the point p. 

Assume that M is a complete Riemannian manifold without conjugate points. If 

fM R(p)dV is well defined on M, then 

(2.1) /M R(p)dV < O, 

and equality implies that M is flat. 

We will state and give some remarks on the main results of this section before 

we prove them. The advantage of Theorem 2.1 is that  the integrability condition 

is taken on M instead of SM. As shown by Example 3.4 of the third section, 

the condition that  SM and R(p) have well-defined integral on M does not imply 

that  Ric has well-defined integral on SM. So Theorem 2.1 cannot be obtained 

from the above geometric results. 

We have another consequence in case of complete K/ihler manifolds, by con- 

sidering the holomorphic curvature H as a function on the unit tangem bundle. 

THEOREM 2.2: Let M be a complete Kiihler manifold. If M has no conjugate 

points and its holomorphic curvature has a well-defined integral on SM, then the 

integral of the scalar curvature is nonpositive, and it vanishes if and only if M is 

flat. 

It  should be remarked that  Ricci curvature can be expressed in terms of holo- 

morphic curvature (see [BG] p. 519). Prom (6.3) in [BG], we can see that  holo- 

morphic curvature has a well-defined integral does not imply that  Ricci curvature 

has a well-defined integral. An easy consequence of our Theorem 2.2 is 

COROLLARY 2.1: Let M be a complete K~hler manifold without conjugate 

points, and nonnegative holomorphic curvature. Then M is flat. 

Remark  2.1: It  should be remarked that  we don' t  assume here that  M does 

not contain conjugate points. A result completely similar to Corollary 2.1 can be 
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obtained for K/ihler manifolds with H replacing Ric, except that in that  situation 

the equality will imply the stronger conclusion: 'M is flat'. 

We begin the proof of our results with the following proposition. First we note 

that 

(2.2) i(w, f )  < liminf C i t f(T~w)ds. 
t--,+oc J - t  

PROPOSITION 2.1: Let ?: IR -+ M be a geodesic without conjugate points. Let 

us set w = 7'(0). We consider any unit vector field X( t )  which is parallel along 

3 and orthogonal to 7 ~. We define 

K(t )  = I f (X(t ) , '7 ' ( t ) ) ,  r(t) = Ric('~'(t)). 

For (c) and (d) below we will require only that 71[0,+~) does not contain conjugate 

points to ~(0). We have: 

(a) liminft~+~o f_t t K(s)ds < 0 and the equality implies that K(t)  =_ O: 
t 

(b) liminft_~+c¢ f_ t r ( s )ds  <_ 0 and, if  liminft_~+~f~_tr(s)ds = O, then the 

Ricci linear operator RT, vanishes along "). (due to [Gu], extending ICE]); 

(c) limillft_~+c~ fo If(s)ds < +oc; 
t 

(d) l iminf t~+~ fo r(s)ds < +oc (it extends [Am], and can be obtained fi'om 

the method of [Gu]). 

Remark 2.2: We remark that in [CE] it is proved that i(w, Ric) _< 0. Item (b) is 

stated in [Gu] with lira sup instead of lim inf, but the proof leads only to lim inf, 

as already observed by P. Ehrlich in his review of [Gu] in Mathematical Reviews. 
Finally, we note that M does not need to be complete in Proposition 2.1. 

Proof of Proposition 2.1: We only prove (a), since (b), (c) and (d) can be 

obtained easily fi'om [Gu]. Let M be a Riemannian manifold of dimension n. Let 

7: R --+ M be a geodesic without conjugate points. It is well known by [Gn] that 
for all t E N there exists a symmetric linear operator U(t) :  {7'(t)} ± --+ {?.'(t)} ± 

satisfying the Ricatti equation 

(2.3) U t + u 2 + R(. ,  7 ' ) ' / =  o. 

We recall that U ~ is defined by the equation U'(v(t)) = (Uv(t))' where v is any 

paralM vector field perpendicular to "/. Fix a unitary vector field X ± 7 t parallel 

along "?. Set x(t) = <  UX, X >. From (2.3) it is easy to conclude that 

:r ~ + x 2 + I f (X ,  ~ )  <_ O. 
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Now item (a) in Proposition 2.1 follows fi'om Lemma 1.1. | 

To prove Theorem 2.2 and Corollary 2.1 we first prove the following general 

result. For a measurable fimction f :  S M  --+ N as in Theorem 0.1 set Sf(p)  = 

u,,~_~ fs{p} f dm ,  where dm is the Lebesgue measure on the unitary sphere S{p} C 

TpM, and w,~-i is the (n - 1)-dimensional volume of S{p}. 

LEMMA 2.1: Let M '~ be a complete manifold with the integral fS'M f d p  well 

defined on the m~it tangent bundle S M .  Assmne fm'ther that for all geodesic 7 it 

holds that i + ( ' / , f )  < +oc, i _ ( 7 ' , f )  < +ec,  and i(7', f )  < 0 (resp., I+(7 ' , f )  > 

-oc ,  I - ( 7 ' , f )  > -oo,  and I ( 7 ' , f )  > 0). Then 

(z4) f szav <_O( resp., f sNv >_0). 
Assume moreover that equality hokls in (2.4), f is continuous, and either: 

(a) M has few recurrent geodesics, and further the condition i(7'(O), f )  = 0 

(rosp., I(3 ' (0) ,  f )  = 0) implies f (7 ' ( t ) )  - 0 along "), 

o r  

(b) There exists a measurable function x on S M ,  such that, for ahnost all w, 

there is a = a,~ > O, such that 2 = x o 7~ satisfies the Riecati inequality: 

2' + a~: 2 + f o 7  < 0 

( respectively .~ - a~: 2 + f o ? >_ 0). 

Then f - O. 

Proof of Lemma 2.1: Given ally filtration of M by bounded Borel sets Di, we 

have a corresponding filtration SDi of S]~./. By the Fubini Theorem we have 

(2.5) /D S / d v -  l f~ fdtt. 
i Wn- -1  Di 

So if fSM f d p  is well defined on S M  it follows easily fi'om (2.5) that the 

integral of S I on M is also well defined. Lemma 2.1 follows from Theorems 0.1 

and 0.2. | 

Proof of Theorem 2.2: We can assume that there exists a well-defined vector 

field X = J~ /on  S M  which is parallel along geodesics. We note that the fimetion 

x = (UX, X}  is mea~surable since U is lneasurable by [Gn]. It is well known t)y a 

result of Berger ([B]) that 

n + l  
SM -- 2(2n - 1) SH, 
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where n is the complex dimension of M. So Theorem 2.2 is a direct consequence 

Lemma 2.1 together with Proposition 2.1, item (a). Note that it is well known 

that. I((w, Jw) =- 0 implies that M is flat,. | 

Proof of Corollaw 2.1: It follows directly from Theorem 0.2 and from the well- 

known fact that. H -- 0 implies that M is flat,. | 

Now we prepare the proof of Theorem 2.1. When we have f :  M --+ N, we can 

define f:  S M  + R by f(p, v) = f(p). In this case we have S f  = f .  

LEMMA 2.2: Let f, f be as above. If f has well-defined integral on M then f 
has well-defined integral on SM. 

Proof: We have that the negative or the positive part of f is integrable. For 

example, let us assume that the negative part of f is integrable. Consider a 

filtration Di of ~I by con:pacts sets Di. Note that. ( f _ ) -  = ( f )_ .  So we have 

fDi f-d~/7~" /DiS((f_)-) d~'7- ,~l;,z~ 1 /~Di (])-d'p'--~ ~Alf -(1~7" 

This implies that ( f )_  is integrable. So we conclude that the integral of f is well 

defined on SM. | 

Proof of Theorem 2.1: Consider R: M -+ IR given by R(p) = infves{p} Ric(v). 

If we assmne that R has well-defined integral on M we conclude by Lemnm 2.2 

t h a t / )  has well-defined integral on S.hI. If .hi does not contain conjugate points, 

then for all w E SM Proposition 2.1 (b), (d) imply that 

i(u,, ft) <_ i(w, Ric) _< 0, 

and 

i+(w,/~) _< i+(w, R i c )<  +c~, i_(w,/~) _< i_(w, Ric) < +oo. 

For the right, inequality above we just. used that Ric(w) = Ric( -w) .  So we can 

apply Lemnm 2.1 obtaining 

fa R d V =  fa S~dV <-O. I I 
Now assume that equality holds in the above inequality. Since 

1 
trace(U 2) > ~ (trace( U))2' 



332 S. MENDON~A AND D. ZHOU Isr. J. Math. 

for y = trace(U) we can easily obtain from (2.3) tha t  

'/,i y(t2) - y(tl) + ~ y2(t)dt + R('y'(t))dt 

l ft]2 f t l  ~ _< y(t2) - y ( t : )  + ~ y2(t)dt + Ric(~/(t))dt ~ O, t I < t 2. 

So Lemma 2.1 implies t h a t / ~  - 0, hence i(w, R) = i(w, Ric) = 0, for all w E SM.  
So Proposi t ion 2.1 (b) implies tha t  M is flat. Theorem 2.1 is proved. | 

I t  is our belief tha t  our  results could be generalized to a more general version, 

so tha t  it could include Huber ' s  theorem as a special case and thus give a new 

proof  of it. To this direction we would need to do some work in comparison of 

Morse index between Riemannian manifolds. 

To show the wideness of applications of Theorems 0.1 and 0.2 we finish this 

section with an application to the integral geometry on R n. 

COROLLARY 2.2: Let f:  ~n .._+ ~ be a continuous fimction with well-defined 
integral. Assume that along each line 7 we h a w  

nf " (2.6) 1!1~: i_ f o 7(t)dt <_ O. 
v - ' ¢ ' + ~  ' t t  

Then f ~  f d V  <_ O. Now we assume that f~. / d V  = O, and that the equality in 
(2.6) implies that f o 7 =- O. Then f = O. 

Proo~ Lemma 2.2 implies tha t  f has well-defined integral on SR  '*. The inequal- 

ity follows fl'om Theorem 1.2, since SR" is dissipative (note tha t  all geodesics 

are nonrecurring). The rigidity par t  follows from item (a) in Theorem 0.2, since 

there is no recurrent geodesic. | 

3. Examples 

The examples below show tha t  the conditions on Theorem 0.2 are essential. 

Example 3.1: Let S n be the s tandard  sphere. Consider in SS" a neighbourhood 

W of a simple closed orbit  7: [0, 24] --+ S S  ~, and we may assmne tha t  W is 

of the form ? × B, where B is a closed disk and 7 × {x} is a simple closed 

orbit a:  [0, 27r] --+ S S ' ,  where ~(0) = (7(0) ,x) .  Take a smooth  bump function 

ct: B --+ [0, 1] with a(:r) > 0 on the interior of B and (~ - 0 on the boundary  OB. 
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Consider J': SS" -+ R, given by .f(~(t),.c) = (l(.r)siu(t), for (~(t),.v) E W, and 

f = 0 outside W. We have 

.2~ Sill tdt < O, 
n/4-2kn 

for all L" E N. hence i ( f )  <_ O, and of course we have i+(f)  < +oc and i _ ( f )  < 

+oc. So we conchlde that  fs'.~', fdp  <_ O. Sinfilarly we get fs',s',, fdl t  > O, hence 

f'~v~',, f(ll' = 0 and f ~ O. 

Ren2ark 3,1: The above example and Theorenl 0.2 show that,  given a > 0, 

there exists no absohltely continuous function .r: R -+ R satisfying the ineqltality 

. d +  a x 2 +  sin t < 0 ahnost everywhere. We used the function Sillt, but we 

could have used any other periodic fimction with null integral on the period. 

So we conehlde that  such a fiulction could not satisfy the Ricatti  inequality 

(1.1). Ill particular, we obtain the following corollary. Finally, we would like 

to observe that  the condition that  f is continuous ill Theorem 0.2 is clearly 

essential, otherwise we couhl nlodify the null flmction in a set of nleasure 0 and 

get a ('outradictioIL 

COROLLARY 3.1: Let ~ l)e a ch)sed geodesic of length T in some manifold M. 

A,ssmne that 3 does not contain conjugate points. Then either K(~ ' ,  v) = 0 for 

all vectors v orthogonal to 3 or fo r Ric(3'(t))dt < O. 

Proof: By Proposition 2.1 (b) it is easy to see that  ~ Ric(3'(t))dt < O. If  the 

integral is equal t.o 0 and Ric(3.'(t) ) ~ 0, we can apply the argulnents in the above 

renlark and get a contradiction. So we conchlde that  Ricci curvature vanishes 

along ~. By Proposition 2.1 (b) again we obtain that  K(~ ' , - )  ~ 0. I 

The sl)here has many closed geodesics, so we could think that  the condition "'N 

has few recurrent orbits" could be relaxed to solnething like "N has few closed 

orbits".  The following exalnple shows that  this is not the case. 

Examl)le 3.2: Consider ally colnplete manifold N, with a flow Tt, t E R, and a 

Tt-invariant measure p. Take a nonsingular l)oint w E N and the nontrivial orbit 

%,. Consider sonle small neighbourhood W of w given by the Theorenl of the 

Tubular Flow, and we may assume that  W is of the form "), x B, where ") = "),, 

restricted to [-~, e], B is a closed disk and "~ x {x} is an orbit a: [ -c ,  ~] -+ N, 

where a(0) = (3(0), :c). Finally we assume that,  for ahnost every orbit a passing 

through W, it returns infinitely nlany times to I I '  in both directions (for example, 

i f N  = S T  '~, for a flat. torus T") .  Take a smooth bunlp filnction a: B -+ [0, 1] with 
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a(X) > 0 on the interior of B and a - 0 on the boundary  OB. Consider f :  N ~ R, 

given by f ( 7 ( t ) , x )  = a(x)sin(~rt/s), for (7( t ) ,x)  E W,  and f = 0 outside W. 

Fix an orbit  or: R -~ N passing infinitely many  times in bo th  directions through 

W. Set u = a(0) = (7(0) ,xo) .  Consider sequences uk -+ - c ~ , v k  -~ +cx~, 

such tha t  a(uk) is of the form (7(-e),xh~),  x~, E B, and a(vk) is of the form 

(7(~/2),  Yk), Yk E B. Thus we have 

I TM-~'~ 
,,k f(Ttu)dt = f(Ttu)dt + f(Ttu)dt = f(Tt'u)dt < O. 
k ~' 'uk 3~/2 k - -3¢ /2  

This implies tha t  i(u, f )  < 0. It  is not  difficult to see tha t  i+ ( a ( - z ) ,  ]') _< 0 and 

i - ( a ( - e ) , f )  <_ O, hence i+(u,f) < + oc  and i _ ( u , ] )  < +co .  So we conch,de 

tha t  fN fell* <_ O. Similarly we get fN fdl* >_ O, hence f s  fell* = 0 and f ~ 0. 

The following example shows tha t  the hypothesis U c E(f)  C C for some 

open set U cannot  be omit ted  in Theorem 0.2. 

Example 3.3: Consider a flat cylinder C = S t x IR. Let v be a unit vector 

tangent  to {x} x R at (x, 0), for some x E S 1. Take a small closed neighbourhood 

(7 C SC of v and let U be the image of U- under the geodesic flow Tt. (r is chosen 

sufficiently small in order to have S{(y, 0)} O U = 0, where y is the ant ipodal  

point of x E S t. For a sufficiently small neighbourhood V of (y, 0) we still have 

SV A U = 0. Remove (y, 0) from C and modify the metric of C in V, in order 

to obtain a complete manifold N = C\{(y, 0)}. Since N has now one more end, 

there is a line a in N joining the new end and one of the other ends. We have 

c~ N U = 0. Now we consider the set Z = U O a C SN. It  is easy to see tha t  Z 

is invariant under the geodesic flow and tha t  f z  Rie dl* = 0, since a has measure 

0. However, we don ' t  have tha t  Z is flat. Note tha t  if we consider the restriction 

of Ric to Z, we have conditions (a) and (b) of Theorem 0.2 being satisfied for 

Z = E(Rie) ,  so this example shows that  the hypothesis U C E(f)  C 0 is 

necessary in Theorem 0.2. 

The last example shows tha t  the scalar curvature SM and the function in 

Theorem 2.1, R(p), may have well-defined integral, while Ric does not have well- 

defined integral on the unit tangent  bundle SM. 

Example 3.4: Let M = C H  4 x S 2, where C H  4 is the complex space form with 

holomorphic curvature - 4  and S 2 is the s tandard  Euclidean sphere of constant  

curvature 1. It  is s traightforward to obtain tha t  SM =-- - 7 8 .  For v tangent  to S 2 

we have Ric(v) = 1, and for v tangent  to C H  4 we have Rio(v) = - 1 0  and the 

function in Theorem 2.1 R(p) - - 1 0 .  By using tubular  neighbourhoods on SM 
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and the symmetry  of M it is easy to see that  both Ric+ and Ric_ have infinite 

integral. 
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