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ABSTRACT

We prove new ergodic theorems in the context of infinite ergodic theory,
and give some applications to Riemannian and Kahler manifolds with-
out conjugate points. One of the consequences of these ideas is that a
complete manifold without conjugate points has nonpositive integral of
the infimum of Ricci curvatures, whenever this integral makes sense. We
also show that a complete Kahler manifold with nonnegative holomorphic
curvature is flat if it has no conjugate points.

0. Introduction

Infinite ergodic theory is the study of measure-preserving transformations of in-
finite measure spaces. A class of very natural exammples is that of null-recurrent
Markov chains (resp. their shifts) such as the symmetric coin-tossing random
walk on the integers. There is a great variety of ergodic behavior infinite measure-
preserving transformations can exhibit, and they have undergone some intense
research within the last twenty years, much of which is associated with the name
of Aaronson ([Aa]). In his book Aaronson studied the standard o-finite measure
spaces and non-singular measure preserving transformations.

This paper will provide another class of natural examples in the category of
infinite ergodic theory. We prove new maximal ergodic theorems, which include
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some known geometric results and have some new geometric consequences. We
will restrict the discussion on manifolds even though some of the results can be
generalized to more general cases.

Let N be a manifold equipped with the o-algebra 3 of Borel sets, a flow T3,
t € R, and a T;-invariant measure u. Let g: N — R be a measurable function. We
say that a measurable function g has well-defined integral if either the positive
or the negative part of g is integrable on M. We start with the statement of the
classical Maximal Ergodic Theorem (see [Pt], here we use “inf” instead of the
usual “sup” for later convenience in applications).

MAXIMAL ERGODIC THEOREM: Let g be a measurable function, with well-
defined integral on N, and Z C N be a Ty-invariant Borel subset. Set

Elg) = {w €Z| inf/ g(Trw)dt < 0}.
>0 /g

Then fE[g] gdp < 0.
Our main ergodic result is the following new maximal ergodic theorem.

THEOREM 0.1: Let f be a measurable function with well-defined integral on
N and Z C N be a Ty-invariant Borel set. Consider the following Ty-invariant
subset,

N
E(f)= {w € Z| liminf/ f(Tyw)dt <0, liminf/ f(Tyw)dt < +OO},
ur—oo [ s—=+oco I,

v—=+o0
where I denotes the interval [0, s] if0 < s, and [s, 0] if s < 0. Then [y, ;) fdu < 0.

Here we allow the time to go to infinity in both directions and the total measure
spaces to be infinite. Thus many results in ergodic theory can be reformulated
under this point of view. As shown by our applications to Riemannian geometry,
it is particularly useful in spaces of infinite measure.

When the measure of N is finite, it is not difficult to obtain Theorem 0.1 from
the Maximal Ergodic Theorem. So the importance of Theorem 0.1 relies on the
ergodic theory on infinite measure spaces. We will also give in the first section
another version of Theorem 0.1 (see Theorem 1.2) with the conservative and
dissipative parts of N separated.

As a corollary of Theorem 0.1 we can obtain a pointwise ergodic Theorem.

COROLLARY 0.1: Let f be a measurable function with well-defined integral on

some Ty-invariant Borel subset E. Assume that for almost all w € E we have

liminf | f(Tiw)dt < +oc, limsup [ f(Tiw)dt > —oc.
I,

s—=doo s—xoo Jgg
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Then
(a) the limit

exists almost everywhere in E.
(b) f(Tyw) = f(w), almost everywhere in E;
(¢) [gl|fldp < [ 1fldp, hence fi € L*(E) provided that fig € L'(E);

(d) if further E has finite measure then [, fdu = [ fdu, and

1

vV—u

/ F(TO)d - FO)

in LY(E) as u — —oo and v — +0c.
Our second ergodic result is a rigidity theorem corresponding to Theorem 0.1.

THEOREM 0.2: Let N and f be as in Theorem 0.1 and let ~,, denote the orbit
satisfying v,,(0) = w. Assume that there exists an open set U such that the T;-
invariant set E(f) satisfies U C E(f) C U, where U is the closure of U. Suppose
that fE(f) fdp =0 and f is continuous. Then f =0 on E(f) provided that one
of the following conditions holds:

(a) The interior of E(f) has few recurrent orbits, namely, for each point
w € E(f) and each neighbourhood W of w, there exists a Borel set E C W
with positive measure, such that for each w € E, at least one of the two
pieces Yult>0, Ywlt<o does not intersect E for |t| large enough; and for
almost all w € E(f), the condition

(%
lin_}_nolof/ f(Tw)dt =0
oo JU
implies that f(T,w) = 0 along 7y,.
(b) There exists a measurable function x on E(f), such that, for almost all w,
there exists a = a~,, > 0 such that the function x o 7y satisfies the following
inequality of Ricatti type:

(xoy) +a(roy)>+ foy<O.

There are many examples of manifolds with the property in condition (a), for
example the unit tangent bundles SM of complete and noncompact manifold AL
with sectional curvature ' > 0, or a complete simply connected manifold without
conjugate points. However, the unit tangent bundle SS™ of the standard sphere
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and the unit tangent bundle ST" of a flat torus are typical examples which
do not satisfy this property. The conditions in Theorem 0.2 are natural in our
geometric applications. We show in Examples 3.1 and 3.2 in the third section
that the conditions for rigidity in Theorem 0.2 cannot be dropped.

Our ergodic theorems extend several geometric results. Among them are: the
famous theorem of Hopf-Green ([Gn]) which says that the integral of scalar cur-
vature of a closed manifold without conjugate points is nonpositive and is zero if
and only if the metric is flat; and its generalization to noncompact Riemannian
manifolds by Guimardes ([Gu]). Besides, we also have new geometric applica-
tions involving Ricci curvature in Riemannian cases and holomorphic curvature
in Kahier cases {see §2).

The rest of this paper is organized as follows. In the first section we prove the
ergodic results. In the second section we apply them to Riemannian geometry,
particularly to the integral of curvature, and to integral geometry. In the third
section we present the examples mentioned in the discussions.

ACKNOWLEDGEMENT: The authors would like to thank Jianguo Cao and Fre-
derico Xavier for some useful remarks. We are also indebted to Marcelo Viana
and Benjamin Weiss for their kind help and support. The first author would like
to thank the University of Notre Dame for its hospitality during the last part of
this work, and the second author would like to thank IMPA and IHES for their
financial support and hospitality during the work.

1. Proof of the ergodic results.

Let f: N — R be a measurable function, which is assumed to be Lebesgue
integrable along compact parts of some orbit starting at w € N. We define:

u——00
v—4oc

i(w, f) == hmmf/ f(Tw)dt, I(w, f):= Iimsup/uf(Ttw)dt,

B~ 00

iv(w, f) ~hn11nf/ f(Gw)dt, I (w,f —hmsup/ f(Tyw)d

s+ s—+00

_(w, f):= ligl_inf/ f(Tw)dt, I_(w,f):= hmsup/ f(Tyw)dt,

8§—=3—00

and then
E(fy={we Z|i(w, f) <0, iy (w, f) < +o0, i_{w, f) < +o0}.

Let us begin our proof by recalling some facts of ergodic theory. We refer to [Pt]
as a basic reference. Given a positive integrable function g on some T;-invariant
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Borel set Z, define the following T;-invariant sets:

+oc
Dt = {'w € Z| the Lebesgue integral /
0

g(Tyw)dt < +oo}, Ct = Z\D".
The Hopf decomposition Z = DYUC* does not depend on the integrable positive
function ¢ up to a set of measure 0. DT and C* are called, respectively, the
dissipative and the conservative parts of Z. If we consider the reverse flow T,
we obtain another decomposition Z = D~ UC ™, with similar definitions as above.
The set D = Dt N D~ satisfies the Lebesgue integral fjoo: MTyw)dt < +oo, for
every integrable function h, for almost all w € D. Set T(w) = Thyw. Define an
equivalence relation on Z by saying v ~ w if there exists j € Z so that 77 (v) = w.
Let ©Q be the set of equivalence classes and 7: Z — ) be the natural projection.
We say that a Borel set E C Z is a wandering set if TV(E) N E = 0. for every
j > 1. Now we cousider the o-algebra on © induced by 7, in which a set A C Q2
is measurable if and only if 77!(A) is a Borel set. Let fi be the measure on ()
given by

A(E) = sup{u(E)| E Cc n~Y(E), E is a wandering set}.

We state here a result of Guimaraes which will be used in the proof of Theorem
0.1.

PrOPOSITION 1.1 (Proposition 2.3 in [Gu]): If g is an integrable function on Z,

then o
/ gdp = / / g{Tyw)dtdjt.
D 7(D)J

Now we are ready to prove Theorem 0.1.

Proof of Theorem 0.1: Let f; (respectively f_) be the positive part (respec-
tively, the negative part) of f. By hypothesis either [, E(f) fydp < 400 or
fE(f) f—dp < 4+0c. So we can assume that fEm f-du < +00, otherwise there is
nothing to prove. Take any integrable function 0 < g < f,. We will prove
that fE(f)(g — f_)dp < 0, hence fE(f)gd,u < fE(f) f_du. Since g is arbi-
trary, the monotone convergence theorem implies that f, is also integrable and
fE(f) fadp < fE(f) f—dpu, hence fE(f) fdp < 0. To prove that fE(f)(g - f-)dp
< 0, we consider the disjoint union E(f) = DUCY u(C~\C*).

Take w € D. Since i(w, f) < 0, there exist sequences uy — —o00, Uy, — +00
such that limy— 400 | zz‘ f(Taw)dt < 0. Since [~ _(g— f-)(Tyw)dt < +oo we have

/OO (g — f-)(Tyw)dt = lim /‘Uk (g — -} Tyw)dt < lim/vk f(Tyw)dt <0,

—o0
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for almost all w € D. Then from Proposition 1.1 we obtain

/D(g - f-)dp = /W(D) /_c:(g — f_ ) (Tyw)dtdji < 0.

Now we take w € C* and fix some positive integrable function fy, and § > 0.
Since iy (w, f) < 400 there exist L € R and a sequence s, — +0o such that
oF f(Tyw)dt < L. So we have

/Sk (9 — f- = 6fo)(Tyw)dt < /Sk f(Tyw)dt — 5/Sk fo(Trw)dt = —o0,
0 0 0

for almost all w € C*, by definition of C*. By the Maximal Ergodic Theorem
we have [, (g — f- — 6fo)dp <0, and we get [, (g — f-)dp < 0, by making
d—0.

In the case that w € C_ the proof is similar, applying the Maximal Ergodic
Theorem to the reverse flow T_;, and using that i (w, f) < +oco. This concludes
the proof of Theorem 0.1. [

Applying Theorem 0.1 to —f we obtain:

THEOREM 1.1: Let f be a measurable function with well-defined integral on
N and Z C N be a Borel set, which is T-invariant. Consider the following
Ti-invariant subset,

E(f) ={we Z] I(w, f) 20, I(w, f) > —o0, I_(w, f) > —oo}.

Then fE(f) fdu > 0.

The equality in Theorem 1.1 implies a rigidity theorem completely similar to
Theorem 0.2. We note also that, in the proof of Theorem 0.1, when w € D
we used only i(w, f) < 0, and when w € (C*T U C™) we used only i, (w, f) <
+00, i-(w, f) < +oo. Thus we can separate Theorem 0.1 considering the dis-
sipative part D and the conservative parts C* and C~. This modification has
some applications (see for example Corollary 2.2) and we state it as the following
theorem.

THEOREM 1.2: Let N, Z and f be as in Theorem 0.1. Counsider the Hopf
decomposition Z = DUCTUC™. Set: D(f) = {w € D|i(w, f) <0}, CH(f) =
{w e Ct] ip(w, f) < +o0}, C(f) = {w € C7| i(w, f) < +o0}. Then the
integral of f is nonpositive on each one of the sets D(f), C*(f), C~(f).

Note that Ct N C~ could be nonempty. So, if it is convenient, we can use
C~\C? instead of C~ to have a disjoint union (in fact we did it in the proof of
Theorem 0.1).
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Now we begin to prove our Theorem 0.2 by stating two lemmas about Ricatti
inequalities which follow from [Gu], Proposition 3.3. For a positive constant a
and a continuous function z, consider the following inequality of Ricatti type:

tz t2
(1.1) x(tg) — x(ty) + a,/ 2*(s)ds + f(s)ds <0, t1<to.

t] tl
LEMMA 1.1: Ifx is a solution of (1.1) for all real numbers t; < to, then we have
€ = liminf, , fitf(s)ds < 0. Furthermore, we have £ = 0 if and only if
f#)=0and x(t) = 0.

LEMMA 1.2: Assume that x satisfies (1.1) for all t9 > t1. Then, for all¢ > 0, we
have n = liminf;_, | o fttl f(s)ds < +o0.

Now we are in position to prove Theorem 0.2.

Proof of Theorem 0.2: First we consider the hypothesis (a) in Theorem 0.2.
Suppose by contradiction that |, E(f) fdu = 0 and that there exists w € E(f)
with f(w) # 0. Since f is continuous, and N has few recurrent orbits, we can
assume without loss of generality that w is in the interior of E(f), and that v,
is not constant. So there exists a neighbourhood W of w of the form [0,¢] x B,
where B is an open disk and W is given by the Theorem of the Tubular Flow.
We can assume also that f # 0 on W, and that ¢ is the time that each connected
component of an orbit remains on W. Let E be the Borel subset of points
x € W, such that at least one of the pieces v;|t>0, Yz|t<o does not intersect W
for sufficiently large |¢|. By our hypotheses, we have i(x, f) < 0 for almost all
x € W, and u(E) > 0. Let E be the set of points » € E satisfying v.(t) ¢ W
for sufficiently large t > 0. We have p(E) > 0 or ,u,(E\E) > 0. Without loss
of generality we assume that u(E) > 0 (the other possibility can be treated
similarly).

Given z € E, let v be the last counected component of y, which enters in W
and let v2,~3,... be the preceding components. If 2 is in vJ we set j(x) = j. So
we define g: E(f) — R given by

max{i(x. f), -1}
2i(xT) g

g(x) =

ifeeE, gx)y=0ifxe E(f\E.

It is not diflicult to see that ¢ is a measurable function. In fact, the function
¢: E x R? — R given by ¢(x,u,v) = [ f(Tpx)dt is measurable, hence i(z. f) is
measurable. By the continuity of the flow T}, for y in a small neighbourhood of
we have j(y)} > j(z}, so the function j is semi-continuous, hence it is measurable.
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Note also that
max{ -1 }

hence 0 > f_+:§ g(Tra)dt > max{i(x, f), -1}

So we define f = f— -9 By considering the cases i(x, f) < —1 and 0 > i(x, f) >
—1 we still have i(x, f) < 0, iy(x, f) < +oc and i_(x, f) < 400, for almost all
x € E(f). Then we ha,ve i) E() fdp < 0 by Theorem 0.1. On the other hand, we

have
fdu = fdp - / gdu =0~ / gdu > 0.
E(f) E(f) E(f) E(f)

This contradiction proves Theorem 0.2 under the hypothesis (a).

Now we assumme hypothesis (b) of Theorem 0.2. By integration we arrive at
inequality (1.1). Fix ¢ > 0. First we rewrite the inequality (1.1) in the following
form:

(1.2) av(tz)—ar(t1)+as/t2 172(t)dt+/t2 (f()+ (1 —<)ax®(t))dt <0, t; <t

3] t1

For almost all w € E(f) we can apply Lemma 1.1 to (1.2) obtaining

i(w, f+a(l —e)2?) < lim mf/ {f(Tsw) + a( )(:l?(Tgur))2}ds <0.

Thus we obtain i(w. f + a(1 — ¢)2?) < 0. By Lemma 1.2 we have
iy(w, f+a(l—g)2?) <+oo and i_(w, f+a(l-e)a?) < +o0.

To apply Theorem 0.1 to f+a(1—¢)x? we need only check that f+a(1—¢)a? has
well-defined integral on E(f). Since f has well-defined integral and | e S =0,
we conclude that |, e f+dp = J £(f) f-dp < +oo. Since the negative part of
g = f+a(l - ¢)a? is not bigger than f_, then J 9- < +00 and we can apply
Theorem 0.1. We obtain

f+a(l—g)a?)du= fdu+ 1 —¢)aa’dp < 0.
( / f 1
E(f) E(f) E(S)

Since | E(f) fdu = 0, we conclude that © = 0 almost everywhere. We assert that
this implies that f < 0. If this is not true, the continuity of f implies that there
exists an open set W contained in the interior of E(f) such that f > 0 on W.
By (1.1) we conclude that « is strictly decreasing along the orbit ~,, N W, for
almost all w € W. In particular these orbits are not constant, hence W contains
a neighbourhood V given by the Theorem of the Tubular Flow. Fix a transversal
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section ¥ in V. For almost any w € ¥ the orbit v, NV has & = 0 at most at one
of its points. This contradicts the fact that x = 0 almost everywhere on V. So
we have f < 0. Since fE(f) fdu = 0, the contimuity of f leads to f =0 on E(f).
The proof of Theorem 0.2 is completed. |

Proof of Corollary 0.1:  The proof is completely similar to the proof of the
Birkhoff Pointwise Ergodic Theorem in [Pt], using our Theorem 0.1 instead of
the Maximal Ergodic Theorem. We observe that Corollary 2.2 in [Pt], which
is needed in the proof, is shown there hy assuming finite measure, but it could
be easily obtained in the infinite case, just considering a convergence by sets of
finite measure. The proof of the Birkhoff Theorem is done there for the case of
a measure-preserving transformation T, instead of a flow T} preserving measure,
but the adaptation to our case is trivial and standard. We will only present the
proof of item (c), since it is short, and can give some idea of the adaptations
needed to prove our corollary. By item (a) we have

f(v) = lim 1

n—+oo 2n

/ f(Tyv)dt,

for almost all v € E. Since
’L/TI f(T'U)(h‘l < L /*n | £ (Tyv)|dt
m J_ T Sy D

it holds that |f| < |f|~ almost everywhere. We can assume that f € L!(E),
otherwise the inequality in (c) is trivial. Now we use Fatou’s Lemma and the
fact that p is invariant under the flow T;. We have

J i< [ 151 du < it /E {;;— | If(Tw)ifff}du= J 11 < oo, n

2. Some applications of the ergodic theorems

Let M™ be a complete n-dimensional Riemannian manifold with the normal-
ized scalar curvature Sp;. In 1948, E. Hopf ([Ho]) proved that the integral
Jas SmdV < 0 when M? is compact and has no conjugate points, and the inte-
gral vanishes if and only if the metric is flat. An important generalization of E.
Hopf’s Theorem is due to Green ([Gn]) who proved that the dimension restric-
tion is superfluous. Combining with the Gauss-Bonnet Theorem, this beautiful
result implies that any metric on torus T? without conjugate points is flat. The
generalization of the result to 7" known as E. Hopf’s conjecture was proved by
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Burago and Ivanov ([BI]). After an improvement of Innami ([I]), this celebrated
theorem of Hopf and Green has been generalized by Guimaraes in [Gu] to com-
plete manifolds without conjugate points, under the additional condition that
the Ricci curvature has well-defined integral as a function on the unit tangent
bundle SM, equipped with the Liouville measure j.

All the above-mentioned results could be considered as special cases of our
ergodic theorems. Besides, we have the following

THEOREM 2.1: Let R(p) be the infimum of Ricci curvatures at the point p.

Assume that M is a complete Riemannian manifold without conjugate points. If
[3s R(p)dV is well defined on M, then

(2.1) | Rav <o

and equality implies that M is flat.

We will state and give some remarks on the main results of this section hefore
we prove them. The advantage of Theorem 2.1 is that the integrability condition
is taken on M instead of SM. As shown by Example 3.4 of the third section,
the condition that Sy; and R(p) have well-defined integral on M does not imply
that Ric has well-defined integral on SM. So Theorem 2.1 cannot be obtained
from the above geometric results.

We have another consequence in case of complete Kahler manifolds, by con-
sidering the holomorphic curvature H as a function on the unit tangent bundle.

THEOREM 2.2: Let M be a complete Kahler manifold. If M has no conjugate
points and its holomorphic curvature has a well-defined integral on SM, then the
integral of the scalar curvature is nonpositive, and it vanishes if and only if M is

flat.

It should be remarked that Ricci curvature can be expressed in terms of holo-
morphic curvature (see [BG] p. 519). From (6.3) in [BG], we can see that holo-
morphic curvature has a well-defined integral does not imply that Ricci curvature
has a well-defined integral. An easy consequence of our Theorem 2.2 is

COROLLARY 2.1: Let M be a complete Kihler manifold without conjugate

points, and nonnegative holomorphic curvature. Then M is flat.

Remark 2.1: It should be remarked that we don’t assume here that M does
not contain conjugate points. A result completely similar to Corollary 2.1 can be
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obtained for Kihler manifolds with H replacing Ric, except that in that situation
the equality will imply the stronger conclusion: ‘M is flat’.

We begin the proof of our results with the following proposition. First we note
that

(2.2) i(w, f) < hmmf/ f(Tsw)d

t—+400

PROPOSITION 2.1: Let v: R — M be a geodesic without conjugate points. Let
us set w = v'(0). We consider any unit vector field X (t) which is parallel along
4 and orthogonal to v'. We define

K(t) = K(X(1),7'(t)), r(t) = Ric(y'(1)).

For (c) and (d) below we will require only that [0, +.c) does not contain conjugate
points to ¥(0). We have:
(a) liminf,, o f K (s)ds < 0 and the equality implies that K(t) = 0:
(b) liminf; 4 f_t s)ds < 0 and, if lim lnft_,+oof r(s)ds = 0, then the
Ricci linear operator R, vanishes along ~ (due to [Gu]. extending [CE]);
(¢) liminf; 4 fo K(s)ds < +00;
(d) liminf; 4o fo s)ds < 4+oo (it extends [Am], and can be obtained from
the method of [Gu]).

Remark 2.2:  We remark that in [CE] it is proved that i(w, Ric) < 0. Item (b) is
stated in [Gu] with lim sup instead of lim inf, but the proof leads only to lim inf,
as already observed by P. Ehrlich in his review of [Gu] in Mathematical Reviews.
Finally, we note that M does not need to be complete in Proposition 2.1.

Proof of Proposition 2.1: 'We only prove (a), since (b), (¢) and (d) can be
obtained easily from [Gu]. Let M be a Riemannian manifold of dimension n. Let
7: R = M be a geodesic without conjugate points. It is well known by [Gn] that
for all ¢ € R there exists a symumetric linear operator U{t) : {v'(t)}*+ — {¥'(1)}*
satisfying the Ricatti equation

(2.3) "+ U+ R(.4') =0.

We recall that U’ is defined by the equation U'(v(t)) = (Uv(t))" where v is any
parallel vector field perpendicular to 4’. Fix a unitary vector field X 1 ~' parallel
along 7. Set x(t) =< UX, X >. From (2.3) it is easy to conclude that

o +a? + K(X,4)) <0.
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Now item (a) in Proposition 2.1 follows from Lemma 1.1. [ |

To prove Theorem 2.2 and Corollary 2.1 we first prove the following general

result. For a measurable function f: SA/ — R as in Theorem 0.1 set Sy(p) =
1

Wy -1

T,M, and w,_1 is the (n — 1)-dimensional volume of S{p}.

f S{p} fdm, where dimn is the Lebesgue measure on the unitary sphere S{p} C

LEMMA 2.1: Let M™ be a complete manifold with the integral fSM fdu well
defined on the unit tangent bundle SA{. Assume further that for all geodesic v it
holds that i (v, f) < o0, i—(¥, f) < +o0, and i(7', f) <0 (resp., I.(v'. f) >
—00, I.(y'.f) > —oc, and I(v', f) > 0). Then

(2.4) SdV < 0( resp..

Spdv > o).
M

M

Assume moreover that equality holds in (2.4), f is continuous, and either:

(a) M has few recurrent geodesics, and further the condition i(y'(0), f) = 0
(vesp., I(7'(0), f) = 0) implies f(+'(t)) = 0 along ~;

or

(b) There exists a measurable function x on SM, such that, for almost all w,
there is a = a,,, > 0, such that & = x o v, satisfies the Riccati inequality:

#F4ai?+ foy<0
( respectively &’ — ai® + fo~y > 0).

Then f =0.

Proof of Lemma 2.1: Given any filtration of M by bounded Borel sets D;, we
have a corresponding filtration SD; of SM. By the Fubini Theorem we have

(2.5) / SpdV =
D;

fdp.
Wp—-1 J5D;

So if [, fdp is well defined on SM it follows easily from (2.5) that the
integral of Sy on M is also well defined. Lemma 2.1 follows from Theorems 0.1
and 0.2. |

Proof of Theorem 2.2: We can assume that there exists a well-defined vector
field X = J~' on SM which is parallel along geodesics. We note that the function
x = (UX, X) is measurable since U is measurable hy [Gn]. It is well known by a
result of Berger ([B]) that

n+1

Su = 2(n — 1)
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where n is the complex dimension of M. So Theorem 2.2 is a direct consequence
Lemma 2.1 together with Proposition 2.1, item (a). Note that it is well known
that K (w, Jw) = 0 implies that M is flat. |

Proof of Corollary 2.1: It follows directly from Theorem 0.2 and from the well-
known fact that H = 0 implies that M is flat. ’

Now we prepare the proof of Theorem 2.1. When we have f: M — R, we can
define f: SM — R by f(p,v) = f(p). In this case we have S;=1f.

LEMMA 2.2: Let f,f be as above. If f has well-defined integral on M then f
has well-defined integral on SM.

Proof: We have that the negative or the positive part of f is integrable. For
example, let us assume that the negative part of f is integrable. Consider a

filtration D; of M by compacts sets D;. Note that (f_)~ = (f)-. So we have

1 _
_dV = S IV = / _dpe— / _dV.
/D,. f-a /D,-, ((f-)_)( Wn-1 Jsp, (F)-d M I

This implies that (f)_ is integrable. So we conclude that the integral of f is well
defined on SA. |

Proof of Theorem 2.1: Consider R: M — R given by R(p) = inf,¢gp} Ric(v).
If we assume that R has well-defined integral on M we conclude by Lemma 2.2
that R has well-defined integral on SM. If M does not contain conjugate points,
then for all w € SM Proposition 2.1 (b), (d) imply that

i(w, R) < i(w,Ric) <0,

and

ir(w,R) <iy(w,Ric) < 400, i_(w,R)<i.(w,Ric) < +0o.
For the right inequality above we just used that Ric(w) = Ric(—w). So we can
apply Lemma 2.1 obtaining

RV = | SgpdV <0.
M M

Now assume that equality holds in the above inequality. Since

1

trace(U?) >
race( )_"_1

(trace(U))?,
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for y = trace(U) we can easily obtain from (2.3) that

) =it + = [0+ [ RO/ G)ar

1

1 ta t2
< ylta) — y(t1) + ﬁ/ yQ(t)dt-i-/ Ric(y/(t))dt <0, ¢ < ta.
- t1 tl

t2
ty

So Lemma 2.1 implies that R = 0, hence i(w,R) = i(w,Ric) = 0, for allw € SM.
So Proposition 2.1 (b) implies that M is flat. Theorem 2.1 is proved. |

It is our belief that our results could be generalized to a more general version,
so that it could include Huber’s theorem as a special case and thus give a new
proof of it. To this direction we would need to do some work in comparison of
Morse index between Riemannian manifolds.

To show the wideness of applications of Theorems 0.1 and 0.2 we finish this
section with an application to the integral geometry on R".

COROLLARY 2.2: Let f: R* — R be a continuous function with well-defined
integral. Assume that along each line v we have

'Y
(2.6) lim_inf/ fory()dt <0.
vr4oo YU

Then [, fdV < 0. Now we assume that [p, fdV =0, and that the equality in
(2.6) implies that f oy=0. Then f = 0.

Proof: Lemma 2.2 implies that f has well-defined integral on SR™. The inequal-
ity follows from Theorem 1.2, since SR" is dissipative (note that all geodesics
are nonrecurring). The rigidity part follows from item (a) in Theorem 0.2, since
there is no recurrent geodesic. 1

3. Examples

The examples below show that the conditions on Theorem 0.2 are essential.

Example 3.1:  Let 8™ be the standard sphere. Consider in SS" a neighbourhood
W of a simple closed orbit v: [0,27] —» S5, and we may assumne that W is
of the form v x B, where B is a closed disk and v x {z} is a simple closed
orbit g: [0,27] — SS™, where ¢(0) = (¥(0),z). Take a smooth bump function
a: B = 10,1] with a(x) > 0 on the interior of B and « = 0 on the boundary §B.
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Consider f: SS™ — R, given hy f(5(t)..r) = a(x)sin(t). for (",(t),.r) € W, and
f = 0 outside 1. We have

2k
/ sintdt <0,
—nw/4=2k%w

for all € N, hence i(f) < 0, and of course we have i, (f) < +oc and i_(f) <
+0c. So we conclude that f ggn Jdp 0. Similarly we get f ggn fdpr > 0, hence
Jsgu fdp="0and f £ 0.

Remark 3.1: The above example and Theorem 0.2 show that, given a > 0,
there exists no absolutely continuous function : R — R satisfyving the inequality
¥ 4+ ax? + sint < 0 almost everywhere. We used the function sinf. but we
could have used any other periodic function with null integral on the period.
So we conclude that such a function could not satisfv the Ricatti inequality
(1.1). In particular, we obtain the following corollary. Finally, we would like
to observe that the condition that f is coutinuous in Theorem 0.2 is clearly
essential, otherwise we could modify the null function in a set of measure 0 and
get a contradiction.

C'OROLLARY 3.1: Let 5 be a closed geodesic of length T in some manifold M.
Assume that + does not contain conjugate points. Then either K(~',v) = 0 for
all vectors v orthogonal to 4 or fOT Ri('(",' (f))(h‘ < 0.

Proof: By Proposition 2.1 (b) it is casy to see that fOT Ric(4/(t))dt < 0. If the
integral is equal to 0 and Ri('(')r’(f)) Z 0, we can apply the arguments in the above
renmtark and get a contradiction. So we conclude that Ricei curvature vanishes
along 5. By Proposition 2.1 (b) again we obtain that K'(+'.-) = 0. ]

The sphere has many closed geodesics, so we could think that the condition "N
has few recurrent orbits” could be relaxed to something like “N has few closed
orbits”. The following example shows that this is nof the case.

Example 3.2: Consider any complete manifold N, with a flow T;. t € R, and a
T;-invariant measure y. Take a nonsingular point w € N and the nontrivial orbit
Y. Consider some small neighbourhood W of w given by the Theorem of the
Tubular Flow, and we may assumne that W is of the formx v x B, where 4 = 4,
restricted to [—¢, 2], B is a closed disk and 5 x {x} is an orbit o: [-c,¢] = N,
where o(0) = (7(0),2). Finally we assume that, for almost every orbit o passing
through W', it returns infinitely many times to 1" in both directions (for example,
if N = ST”, for a flat torus T"). Take a smooth bump function a: B — [0, 1] with
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a(x) > 0on the interior of B and @ = 0 on the boundary dB. Consider f: N — R,
given by f{v(t),z) = alz)sin(nt/c), for (y(t),z) € W, and f = 0 outside W.
Fix an orbit o: R — N passing infinitely many times in both directions through
W. Set u = a(0) = (7(0),:1:0). Counsider sequences u, — —00,v; — +00,
such that o(ug) is of the form (y(—¢),zx), ax € B, and o(vi) is of the form
(v(¢/2).yk)+ yx € B. Thus we have

Vg vp—3e/2 U LE78
/ f(Tu)dt = / F(Tyu)dt +/ f(Tyu)dt = / F(Tyw)dt < 0.
Up Ug ’Uk—3€/2 vk—3s/2
This implies that i(u, f) < 0. It is not difficult to see that iy (o(—<), f) < 0 and
i_(o(-2), f) <0, hence iy(u, f) < 400 and i_(u, f) < +00. So we conclude
that [ fdu < 0. Similarly we get [y fdu >0, hence [, fdp=0and f #0.

The following example shows that the hypothesis U C E(f) ¢ U for some
open set, U cannot be omitted in Theorem 0.2.

Example 3.3: Consider a flat cylinder C = S! x R. Let v be a unit vector
tangent to {z} x R at (z,0), for some z € S*. Take a small closed neighbourhood
U C SC of v and let U be the image of U under the geodesic flow T;. U is chosen
sufficiently small in order to have S{(y,0)} N U = @, where y is the antipodal
point of 2 € S1. For a sufficiently small neighbourhood V' of (y,0) we still have
SV NU = 0. Remove (y,0) from C and modify the metric of C in V, in order
to obtain a complete manifold N = C\{(y,0)}. Since N has now one more end,
there is a line ¢ in N joining the new end and one of the other ends. We have
oNU = (. Now we consider the set Z=UUg C SN. It is easy to see that Z
is invariant under the geodesic flow and that [, Ricdu = 0, since ¢ has measure
0. However, we don't have that Z is flat. Note that if we consider the restriction
of Ric to Z, we have conditions (a) and (b) of Theorem 0.2 being satisfied for
Z = E(Ric), so this example shows that the hypothesis U C E(f) Cc U is
necessary in Theorem 0.2.

The last example shows that the scalar curvature Sp; and the function in
Theorem 2.1, R(p), may have well-defined integral, while Ric does not have well-
defined integral on the unit tangent bundle SM.

Example 3.4: Let M = CH* x S2%, where CH* is the complex space form with
holomorphic curvature —4 and S? is the standard Euclidean sphere of constant
curvature 1. It is straightforward to obtain that Sp; = —78. For v tangent to S?
we have Ric(v) = 1, and for v tangent to CH* we have Ric(v) = —10 and the
function in Theorem 2.1 R(p) = —10. By using tubular neighbourhoods on SM
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and the symmetry of M it is easy to see that both Ricy and Ric. have infinite

integral.
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